The role of cytoplasmic dynein in the human brain developmental disease lissencephaly.

نویسندگان

  • R B Vallee
  • N E Faulkner
  • C Y Tai
چکیده

Lissencephaly is a brain developmental disorder characterized by disorganization of the cortical regions resulting from defects in neuronal migration. Recent evidence has implicated the human LIS-1 gene in Miller-Dieker lissencephaly and isolated lissencephaly sequence. LIS-1 is homologous to the fungal genes NudF and PAC1, which are involved in cytoplasmic dynein mediated nuclear transport, but it is also almost identical to a subunit of PAF acetylhydrolase, an enzyme which inactivates the lipid mediator platelet activating factor. Recent evidence from our laboratory has revealed that cytoplasmic dynein coimmunoprecipitates with LIS-1 in bovine brain cytosol, supporting a role in the dynein pathway in vertebrates. Overexpression of LIS-1 interferes with cell division, with noteworthy effects on chromosome attachment to the mitotic spindle and on the interaction of astral microtubules with the cell cortex. Other aspects of dynein function, such as the organization of the Golgi apparatus, are not affected. Together, these results suggest a role for LIS-1 in cytoplasmic dynein functions involving microtubule plus-ends. Furthermore, they suggest that mutations in LIS-1 may produce a lissencephalic phenotype either by interfering with the movement of neuronal nuclei within extending processes, or by interference with the division cycle of neuronal progenitor cells in the ventricular and subventricular zones of the developing nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function

Mutations in the human LIS1 gene cause type I lissencephaly, a severe brain developmental disease involving gross disorganization of cortical neurons. In lower eukaryotes, LIS1 participates in cytoplasmic dynein-mediated nuclear migration. We previously reported that mammalian LIS1 functions in cell division and coimmunoprecipitates with cytoplasmic dynein and dynactin. We also localized LIS1 t...

متن کامل

Regulation of cytoplasmic dynein ATPase by Lis1.

Mutations in Lis1 cause classical lissencephaly, a developmental brain abnormality characterized by defects in neuronal positioning. Over the last decade, a clear link has been forged between Lis1 and the microtubule motor cytoplasmic dynein. Substantial evidence indicates that Lis1 functions in a highly conserved pathway with dynein to regulate neuronal migration and other motile events. Yeast...

متن کامل

The lissencephaly protein Lis1 is present in motile mammalian cilia and requires outer arm dynein for targeting to Chlamydomonas flagella.

Lissencephaly is a developmental brain disorder characterized by a smooth cerebral surface, thickened cortex and misplaced neurons. Classical lissencephaly is caused by mutations in LIS1, which encodes a WD-repeat protein involved in cytoplasmic dynein regulation, mitosis and nuclear migration. Several proteins required for nuclear migration in Aspergillus bind directly to Lis1, including NudC....

متن کامل

LIS1 at the microtubule plus end and its role in dynein-mediated nuclear migration

The cytoplasmic dynein complex and its accessory dynactin complex are involved in many cellular activities including nuclear migration in fungi (for review see Karki and Holzbaur, 1999). LIS1, the product of a causal gene for human lissencephaly (smooth brain), has also been implicated in dynein function based on studies in fungi and more recent studies in higher eukaryotic systems (for review ...

متن کامل

NUDEL Is a Novel Cdk5 Substrate that Associates with LIS1 and Cytoplasmic Dynein

Disruption of one allele of the LIS1 gene causes a severe developmental brain abnormality, type I lissencephaly. In Aspergillus nidulans, the LIS1 homolog, NUDF, and cytoplasmic dynein are genetically linked and regulate nuclear movements during hyphal growth. Recently, we demonstrated that mammalian LIS1 regulates dynein functions. Here we characterize NUDEL, a novel LIS1-interacting protein w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1496 1  شماره 

صفحات  -

تاریخ انتشار 2000